Phase Response in Networks of Bursting Neurons: Modeling Central Pattern Generators
نویسنده
چکیده
منابع مشابه
Stability Analysis of Phase-Locked Bursting in Inhibitory Neuron Networks
Networks of neurons, which form central pattern generators (CPGs), are important for controlling animal behaviors. Of special interest are configurations or CPG motifs composed of reciprocally inhibited neurons, such as half-center oscillators (HCOs). Bursting rhythms of HCOs are shown to include stable synchrony or in-phase bursting, which is a phase-locked state that has zero phase difference...
متن کاملPhase resetting and phase locking in hybrid circuits of one model and one biological neuron.
To determine why elements of central pattern generators phase lock in a particular pattern under some conditions but not others, we tested a theoretical pattern prediction method. The method is based on the tabulated open loop pulsatile interactions of bursting neurons on a cycle-by-cycle basis and was tested in closed loop hybrid circuits composed of one bursting biological neuron and one burs...
متن کاملRegularization mechanisms of spiking-bursting neurons
An essential question raised after the observation of highly variable bursting activity in individual neurons of Central Pattern Generators (CPGs) is how an assembly of such cells can cooperatively act to produce regular signals to motor systems. It is well known that some neurons in the lobster stomatogastric ganglion have a highly irregular spiking-bursting behavior when they are synaptically...
متن کاملMultistability in Bursting Patterns in a Model of a Multifunctional Central Pattern Generator
A multifunctional central pattern generator (CPG) can produce bursting polyrhythms that determine locomotive activity in an animal: for example, swimming and crawling in a leech. Each rhythm corresponds to a specific attractor of the CPG. We employ a Hodgkin-Huxley type model of a bursting leech heart interneuron, and connect three such neurons by fast inhibitory synapses to form a ring. This n...
متن کاملA PRC description of how inhibitory feedback promotes oscillation stability
Using methods of geometric dynamical systems modeling, we demonstrate the mechanism through which inhibitory feedback synapses to oscillatory neurons stabilize the oscillation, resulting in a flattened phase-resetting curve. In particular, we use the concept of a synaptic phase-resetting curve to demonstrate that periodic inhibitory feedback to an oscillatory neuron locks at a stable phase wher...
متن کامل